Practice 9

Topic Check of the stability at the first approximation on Lyapunov's

Let description of dynamic system we have in state-space of condition in the matrix form of the following kind:

$$
\begin{equation*}
\dot{X}=A X+B U, \tag{1}
\end{equation*}
$$

where $X[n * 1]$ is a vector of a state of Control Object (CO); $U\left[m^{*} 1\right]$ is a control vector ($m \leq n$);
$A[n * n], B[n * m]$ are the matrixes of constant factors.
The characteristic equation of this system calls the name as follows:

$$
\begin{equation*}
\operatorname{det}(A-\lambda I)=0 \tag{2}
\end{equation*}
$$

where $I[n * n]$ is an individual matrix of the appropriate dimension;
λ is an own numbers of the matrix A or roots of the characteristic equation of the following polynomial:

$$
\lambda^{n}+a_{1} \lambda^{n-1}+\ldots a_{n-1} \lambda+a_{n}=0 .
$$

We check of the dynamic system on stability, using the theorems Lyapunov's.

Algorithm

1. It is necessary to solve the characteristic equation of a kind (2):

$$
\operatorname{det}\left|\begin{array}{cccc}
\left(a_{11}-\lambda\right) & a_{12} & \ldots & a_{1 n} \\
a_{21} & \left(a_{22}-\lambda\right) & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & \left(a_{n n}-\lambda\right)
\end{array}\right|=0 \Rightarrow \lambda_{i}=\alpha_{i} \pm j \beta_{i} . \quad \forall i=\overline{1, n} .
$$

2. You should find of the own numbers of the matrix A or roots of the characteristic equation of the following polynomial:

$$
\lambda^{n}+a_{1} \lambda^{n-1}+\ldots a_{n-1} \lambda+a_{n}=0 .
$$

3. You should make a conclusion on stability of dynamic system of the found roots of the characteristic equation, using the theorems Lyapunov's.

Example. Let's description of dynamic system is given in state-space of condition in the matrix form of the following kind:

$$
\dot{X}=A X+B U, \quad U(t) \equiv 0 .
$$

where the matrixes $A=\left[\begin{array}{cc}-4 & 5 \\ 1 & 0\end{array}\right], B=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$.
Determine stability of dynamic system according to Lyapunov. Give of the geometrical interpretation.

Algorithm and solution

1. Write the characteristic equation as following:

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=0 . \quad n=2 . \\
& \operatorname{det}\left|\begin{array}{cc}
(-4-\lambda) & 5 \\
1 & (-\lambda)
\end{array}\right|=0 .
\end{aligned}
$$

2. We'll define own numbers of the matrix A or the roots of the characteristic equation:

$$
\begin{aligned}
& \lambda^{2}+a_{1} \lambda+a_{2}=0 . \\
& (4+\lambda) \lambda-5=\lambda^{2}+4 \lambda-5=0 \\
& \lambda_{1}=-5 ; \quad \lambda_{2}=1 .
\end{aligned}
$$

3. We should make of the conclusion on stability of dynamic system, using the theorems Lyapunov's.

Conclusion: this dynamic system is not steady on Lyapunov's, as a real part of the second root the characteristic equation is positive:

$$
\lambda_{1}=-5 ; \quad \lambda_{2}=1 .
$$

Geometrical interpretation

Task: Let's description of dynamic system is given in state space of condition in the matrix form of the following kind:

$$
\dot{X}=A X+B U,
$$

where matrixes A and B (on variant), $\quad U(t) \equiv 0$.
Determine stability of dynamic system according to Lyapunov. Give of the geometrical interpretation.

Exercises by variants:
1)
$\mathrm{A}=\left[\begin{array}{cc}-2 & 5 \\ 5 & -2\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{l}-1 \\ +1\end{array}\right]$,
2)
$A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right] \quad B=\left[\begin{array}{l}-2 \\ +4\end{array}\right]$,
3)
$\mathrm{A}=\left[\begin{array}{cc}1 & -1 \\ 2 & 4\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{l}5 \\ 3\end{array}\right]$,
4)
$\mathrm{A}=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{l}-1 \\ +7\end{array}\right]$,
5)
$\mathrm{A}=\left[\begin{array}{cc}1 & -1 \\ 7 & 9\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{l}+1 \\ -1\end{array}\right]$,
6)
$A=\left[\begin{array}{ll}2 & 6 \\ 8 & 4\end{array}\right] \quad B=\left[\begin{array}{c}+1 \\ -7\end{array}\right]$,
7)
$A=\left[\begin{array}{ll}2 & 6 \\ 3 & 5\end{array}\right] \quad B=\left[\begin{array}{c}1 \\ -4\end{array}\right]$,
8)
$\mathrm{A}=\left[\begin{array}{ll}3 & 4 \\ 6 & 5\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$,
9)
$A=\left[\begin{array}{ll}10 & 11 \\ 14 & 13\end{array}\right] \quad B=\left[\begin{array}{c}-5 \\ +4\end{array}\right]$,
10)
$\mathrm{A}=\left[\begin{array}{ll}9 & 5 \\ 3 & 7\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{l}-4 \\ +2\end{array}\right]$,
11)
$A=\left[\begin{array}{cc}3 & 5 \\ 11 & 9\end{array}\right] \quad B=\left[\begin{array}{l}-4 \\ +6\end{array}\right]$,
12)
$A=\left[\begin{array}{cc}-5 & 3 \\ 3 & -5\end{array}\right] \quad B=\left[\begin{array}{l}7 \\ 4\end{array}\right]$,

